MicroRNA-3713 regulates bladder cell invasion via MMP9
نویسندگان
چکیده
Transitional cell carcinoma (TCC) is the most common type of bladder cancer but its carcinogenesis remains not completely elucidated. Dysregulation of microRNAs (miRNAs) is well known to be involved in the development of various cancers, including TCC, whereas a role of miR-3713 in the pathogenesis of TCC has not been appreciated. Here, we reported that significantly higher levels of matrix metallopeptidase 9 (MMP9), and significantly lower levels of miR-3713 were detected in TCC tissue, compared to the adjacent non-tumor tissue, and were inversely correlated. Moreover, the low miR-3713 levels in TCC specimens were associated with poor survival of the patients. In vitro, overexpression of miR-3713 significantly decreased cell invasion, and depletion of miR-3713 increased cell invasion in TCC cells. The effects of miR-3713 on TCC cell growth appeared to result from its modification of MMP9 levels, in which miR-3713 was found to bind to the 3'-UTR of MMP9 mRNA to inhibit its protein translation in TCC cells. This study highlights miR-3713 as a previously unrecognized factor that controls TCC invasiveness, which may be important for developing innovative therapeutic targets for TCC treatment.
منابع مشابه
Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals
Early clinical studies suggested that infiltrating mast cells could be associated with a poor outcome in bladder cancer (BCa) patients. The mechanisms of how mast cells influence the BCa progression, however, are unclear. Using the human clinical BCa sample survey and in vitro co-culture systems, we found BCa cells could recruit more mast cells than the surrounding non-malignant urothelial cell...
متن کاملMicroRNA-133a inhibits cell proliferation, colony formation ability, migration and invasion by targeting matrix metallopeptidase 9 in hepatocellular carcinoma.
MicroRNA‑133a (miR‑133a) is downregulated in various types of human malignancy, including hepatocellular carcinoma (HCC), renal cell carcinoma, esophageal squamous cell carcinoma, bladder cancer, ileal carcinoid and rhabdomyosarcoma. The aim of the present study was to examine the effects of miR‑133a on HCC cell proliferation, colony formation, migration and invasion. miR‑133a was transfected i...
متن کاملC1QBP Regulates YBX1 to Suppress the Androgen Receptor (AR)-Enhanced RCC Cell Invasion1
Early studies suggested that the androgen receptor (AR) might play important roles to promote the renal cell carcinoma (RCC) progression; however, the detailed mechanisms remain unclear. Here we demonstrated the higher YBX1 expression with lower C1QBP expression in human RCC clinical tissues, and the intensity of C1QBP was negatively correlated with the YBX1 nuclear expression. Mechanism dissec...
متن کاملThe role and regulation of Rab40b–Tks5 complex during invadopodia formation and cancer cell invasion
Invadopodia formation and extracellular matrix degradation are key events during cancer cell invasion, yet little is known about mechanisms mediating these processes. Here, we report that Rab40b plays a key role in mediating invadopodia function during breast cancer cell invasion. We also identify Tks5 (also known as SH3PXD2A), a known Src kinase substrate, as a new Rab40b effector protein and ...
متن کاملThe Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).
BACKGROUNDS/AIMS Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016